Evidential Networks for Fault Tree Analysis with Imprecise Knowledge
نویسندگان
چکیده
Fault tree analysis (FTA), as one of the powerful tools in reliability engineering, has been widely used to enhance system quality attributes. In most fault tree analyses, precise values are adopted to represent the probabilities of occurrence of those events. Due to the lack of sufficient data or imprecision of existing data at the early stage of product design, it is often difficult to accurately estimate the failure rates of individual events or the probabilities of occurrence of the events. Therefore, such imprecision and uncertainty need to be taken into account in reliability analysis. In this paper, the evidential networks (EN) are employed to quantify and propagate the aforementioned uncertainty and imprecision in fault tree analysis. The detailed conversion processes of some logic gates to EN are described in fault tree (FT). The figures of the logic gates and the converted equivalent EN, together with the associated truth tables and the conditional belief mass tables, are also presented in this work. The new epistemic importance is proposed to describe the effect of ignorance degree of event. The fault tree of an aircraft engine damaged by oil filter plugs is presented to demonstrate the proposed method.
منابع مشابه
Imprecise reliability by evidential networks
This article deals with an implementation of probist reliability problems in evidential networks to propagate imprecise probabilities expressed as fuzzy numbers. First, the problem of imprecise knowledge in reliability problems is described concerning system and data reprsentation. Then, the basics of the evidence theory and its use in a directed acyclic graph approach are given. The imprecise ...
متن کاملBayes Networks and Fault Tree Analysis Application in Reliability Estimation (Case Study: Automatic Water Sprinkler System)
In this study, the application of Bayes networks and fault tree analysis in reliability estimation have been investigated. Fault tree analysis is one of the most widely used methods for estimating reliability. In recent years, a method called "Bayes Network" has been used, which is a dynamic method, and information about the probable failure of the system components will be updated according to...
متن کاملApplication of Evidential Networks in quantitative analysis of railway accidents
Currently, a high percentage of accidents in railway systems are accounted to human factors. As a consequence, safety engineers try to take into account this factor in risk assessment. However, human reliability data are very difficult to quantify, thus, qualitative methods are often used in railway system’s risk assessments. Modeling of human errors through probabilistic approaches has shown s...
متن کاملFault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملEvidential-EM Algorithm Applied to Progressively Censored Observations
Evidential-EM (E2M) algorithm is an effective approach for computing maximum likelihood estimations under finite mixture models, especially when there is uncertain information about data. In this paper we present an extension of the E2M method in a particular case of incomplete data, where the loss of information is due to both mixture models and censored observations. The prior uncertain infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012